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Abst r ~i I

We consider a control led  birth and de .ith process tha t  moves as

follows . Upon r e a c h i ng  a s t a t e  I a pa ir of birth—death parameters

(A ,ij) is selected from a prescribed set. Then the process remains

in the state i until a birth or death uccurs according to these para-

meters , at which t ime a pair of birth—death paraneters is again selected .

This is repeated indefinitely. A cost of c(~~,~~) + h(i) per unit time

is incurred for selecting ~~~~ when the process is in state i, and a

reward is received for each birth. A policy is a rule for successively

selecting the birth—death parameters as a function of the state of the

process. We show, under some weak conditions , that there exist increasing

optimal policies for both the discounted and average reward criteria.

This means that it is optimal to increase the deaths and decrease the

births as the state of the process increases. We show how to compute

such an optimal policy for the case with two possible birth—death parameters.

We then apply our results to the optimal control of the arrival and service

rates in an M/M/l queueing process.

Key Words: Markov decision processes , birth and death processes , queueing

processes, stochastic control , monotone optimal policies.
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Optimal Control of
Birth and Death Processes and Queues

by

Richard F. Serfozo
Syracuse University

1. Introduction

We shall study a controlled birth and death process that moves as

follows . When the process arrives at a state i (a nonnegative integer)

the following events occur.

(1) A pair (A ,p ) of birth—death parameters is selected from the set

(A ,p )}. Think of 
~~a’~ a~ 

or a c {l ,. . . ,m} as the action
taken. We assume that  A

1 
>~ A 2 ... > A > 0 , and 0 < p

1 ~ ... < p .

(2) The process remains in state i for a random time which has an expo-

nential distribution with parameter

A (i,a) =
~~ 

A if I = 0

A + p if i > 1.
a a

Then the process jumps to a neighbor ing state according to the transition

probabilities

q(i,a,i+l) A /(A + p) , q(i,a,i—1 ) = 

~a~
’
~~ a 

+ 
~~~ 

when i � 1,

and

q(0,a,1) = 1 when I = 0.

(3) A cost is incurred at a rate c(a) + h(i) per unit time, during the

sojourn in state 1 , for selecting the action a and being in state i.

p We assume that c(a) is nondecreasing, and h(i) is convex nondecreasing

with h(0) 0. A reward R is also received if the process jumps to

i + 1: the R is a nonnegative reward for a birth.

1
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This series of events is repeated indefinitely. Note that the birth—

death parameters are selected at j ump times of the process: they

cannot be changed between jumps.

A policy f for successively enoosing the birth—death parameters is

def ined to be a mapp ing from the state space {O,l,. ..J to the action

space {l ,. .. ,m}, with the interpretation that action f(i) is taken when

the process is in state 1. Each policy f , along with a rule for starting

the process , determines a continuous time birth and death process whose

birth—death parameters in state i are (.A
f( .)PP f(1)). We let Y and T

denote the n—tb state of the process , and the time at which the process

jumps to State Y , respectively. The action in state 1
n 

is a = f (Y).

The discounted reward for the process is given by

W
f
(i) = E

f
( A e ~g (Y a )  X = I),
n 0

where l~ > 0 is a continuous time discount factor and g~ (i ,a ) ,  the dis-

counted gain in a sojourn , is

1’ T
1

g~ (I,a) = E
f

(e 1R 6 ( Y 1, i+l) — f (c(a) + h ( i ) ) e~~~
tdt Y = I , a ma)

= (R — c ( a )  — h ( i ) ) / ( ~ + 
‘
~. (0,a)) If I = 0

— c(a) — h(i))/(~ + A (I,a)) If i > 1.

Here T
1 

is the exponential sojourn time in state i, the 6(i,j) = 1 or 0

according as 1. j or I 
~ j, 

and a reward received at time t has a

value re 
Pt Similarly, the average reward for the process is

N

~
)
f
(i) u r n  t

1
E
f(~~~

g(X ,a~ ) X0 I),

where N
t 

— sup{n:T ti is the number of jumps in time t.

A policy f* is called s—discounted optimal if

W
f*
(i) SUP Wf

(.i) for all 1,
f

2
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and 1* is called average optimal if

= SUP t~) f
( 1)

f

The aim is to find such optimal policies.

This controlled b i r t h  and dea th  process is a continuous time Markov

decision process with bounded sojourn rates A + p . Such continuous
a a

time processes are equivalent to simpler d i s c r e t e  t ime Markov decision

processes. This equivalence , wh ich was or iginally used by Howard and

Veinott (for processes with finite state spaces) and more recently by

Lippman [5], is discussed in [9]. We use this equ ivalen ce herein to

show that  the controlled b i r t h  and death process is equivalent to the

controlled random walk tha t  we s tudied in [10]. Then applying the results

in [10], we show that there exist increasing discounted and average

optimal policies for the birth and death process. (We use increasing

herein to mean nondecreasing.) This says that it is optimal to increase

the probability of deaths and to decrease the probability of births as

the state of the process increases. The results in [10] for computing

average optimal policies also apply to the birth and death process. We

illustrate this for a two action problem (when m = 2).

In the last section of this paper , we show how our results apply

to the optimal control of the arrival and service rates of M/M/l queueing

processes. Some of the results herein have been derived by different

approaches in [1] — [8], [11] and [12]. Bibliographies on the optimal

control of queues are in [4], [11] and [12].

2. Main Results

We first show that the controlled birth and death p ocess is equivalent

to a controlled random walk. Next we establish the existence of increasing

3
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discount and average optima l policies for the birth and death process.

Then we show how to compute one such policy.

We shall use the notation introduced above . In addition , we shall

consider a random walk on the nonnegative integers (as in [10]) which

moves as follows. Upon arriving at a location i the following events

occur.

(i) A pair of probabilities ~~~~~~ are selected from the set

where

= A
k
/A , ~~~ 

= 1i
k

/’A and A = A + 

~m 
fo r 1 k < m.

(ii) A reward r(i ,a) is received , where

(1) r(i ,a) = ag~ (i,a)(~ + A (i,a))A
1

= (R — c(a) — h(i))/(V + t) for i = 0

(A
a
R - c(a) - h(i))/(~ + A) for I > 1,

and a A/ (~ + ~) Is a discrete time discount factor .

(iii) The next state of the walk is determined by the following transition

probabili ties

p(i,a,i+l) = 
‘~a’ p( i,a,i) = l—p —q , p(i,a,i—l) = q for i > 1,

and

p(O,a,~ .) = 

~~ 
and p(0,a,0) = 

~~a 
for I = 0.

This series of events is repeated indefinitely.

A policy f for this random walk is a function from the state space

(0,1,...) to the action space (1,... ,mi . (These policies are the same as

those for the birth and death process.) A policy f, along with a rule

for starting the process, determines a random walk {X :n > 0), where the

n— th action taken is (p ,q ) when f(X
n) a. The expected discounted

reward for this process is

4
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V
f

(i)  = E
f
( 

•

~ ;

‘ 

~~ (x f ( x ) )  X =

n 0

where

a A/(p + A)

The V
f 
exists and —

~~~ V
f
(i) < “, Si nc e  the r(i ,a) is bounded from above.

The expected average return for t i l e  p rocess  is

~f
(i) = lim n

_l
E
f

’
r
l
Xk,f X

kfl 
X = I).

Note that when a = 1 in (I) the P = 0, and so
7- —l(2) r

1
(i ,a) = (R — c (a) — h( i) ) A  f or I = 0

(AR - c(a) — h(i))A 1 for i > 1.

P and average optimal policies are defined as before.

L ullowing result asserts that the birth and death process is

equivalent to this random walk in the sense that they have identical

optimal policies.

Theorem 2.1. A policy is s—discounted optimal for the birth and death

process If and only if it is a—discounted optimal for the random walk.

A policy is average optimal for the birth and death process if and only

if it is average optimal for the random walk.

Proof. Note that the transition probabilities and rewards of the two

processes are such tha t

p(i,a,j) = A(i,a)q(i,a,j)A~~ if i ~ j

-l1 — A(i ,a ) A  - i f I =

and

r ( i ,a) — g
8
(i,a)(fi + A(i ,a ) ) / ( ~ + A).

Then from [9, Theorem 1.1] it follows that if f is any policy then

5
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W
f

( i )  = V
1 
(I) and ~f

( i ) = t~ ~( i ) f or al l  I.

Thus the assertions follow .

Our next result establishes the existence of increasing optimal

policies for our birth and death process. An increasing policy is of

the form

f(i) = a if I < i i
a—  a+1

where 0 = i
1 

< i
2 

< i n1 
< = “. Under this policy, if the process

Is in state i and i < 
~ < 

~a+i’ 
then the birth—death parameters (A ,~j )

are selected . Since A -‘ ... > A and p < ... p , then the selected
m 1 ’- m

death rate increases as the state I Increases , and the selected birth

rate decreases as i increases. In other words , the probability of

backward movement increases as the state i increases.

Theorem 2.2. There exist increasing discounted and average optimal

policies for controlling the birth and death process.

Proof. Consider the controlled random walk we defined above for discounted

rewards. It satisfies the following conditions:

(3) p
1 

> ... 
~~
‘ ~m ’ q

1 
< ... < q and p

1 
+ < 1.

(4) r ’( i ,l) < ... < r ’( i ,m) and r ’(i,l)  > r~1 1(I+l ,m) for all I,

where

r ’(i ,a) = r (i+l ,a) — r ( i,a) =f_ [(1_A
a
)R ÷ h (l)J/(g + A) If I = 0

-(h(i+l) - h(i))f(~ + A) if i > 1.

Then by [10 , Theorem 2.1] it follows that there exists an increasing

~—discounted optima l policy for controlling the random walk. This policy

is also s—op timal, according to Theorem 2.2, for con trolling the bir th and

death process.

Now consider the controlled random walk for average rewards

(recall (2)). It also satisfies (3) — (4) and

6
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(5) r 1
( i , 1) ~

- . . .  > r 1 ( i ,m) f o r  a l l  I .

Then by [10 , Theorem 6. 1j , L h er e  e x i s t  s an Inc  r &-; 1S i l l ,  I V I F I~~~~. o p t i m a l

p o l i c y  fo r  the  random wa lk .  By Theor em 2 . 2 , t h Is p o l  i c y  i s  i i  ~~~) iv e r a g e

opt ima l f o r  the  b i r t h  and d e a t h  p r o c e s s .

In  Theorem 2 . 2 , we assumed that the  b i r t h — d e a t h  par ; ime t r s  I r e

selected at each jump from a set {(A 1,~~ J

1
), . . . 

~~~~~~~ 
which is m dc—

penden t  of the state ol the  process .  Suppose i n st e a d , tha t when the  pro-

cess is in s t a t e  i , then a pa i r  of b i r t h — d e a t h  p a r a m e t e r s  ( A ( i , a ) , p ( i ,a ) )

is selected f r o m  a set [( ~~( i , l) , (i , l ) ) , . .. , ( ~~(i ,m ) , ~~(i ,m ) ) } .  Assume t ha t

(6) ~(i,l) > ... > A (i,m), ~(i,l) ...
(7) d ’(i,l) < .. . < d ’( i ,m) < 0, and d ’(i,l) > d ’(i+l,m) for all i,

where

d( i , a) = p (i,a) — A(i ,a) and d ’(i,a) = d(i+1,a) — d(i ,a)

This controlled birth and death process is equivalent to the random walk

in Section 3 of [10]. The proof of this is the same as that for Theorem

2.1. From this equivalence , along with [10, Theorem 3.1] and an average

reward analog of it , it follows that Theorem 2.2 holds. This is also

discussed in [1] just for discounted rewards. Other analogs of Theorem 2.2

fo r  decreasing policies , or for  f i n i t e  time horizons , can be obtained in

the same way from Theorem 2.3 or Theorem 9.1 in [10].

The results in [10] on the computation of average optimal policies

- 
also apply to birth and death processes. We illustrate this for a

special case.

Theorem 2.4. Suppose the birth and death process has two possible

parameter pairs (‘1,p 1
) and (A 2,p2

) and that the reward for a sojourn in

state I is

g ( i ,a) = (— c ( a )  — ih)/A (i ,a) for all a,

7
a 
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where h 0. I l i e n  i t  i av e ra p e  ~ p t  m l  t~ se lec t ( ‘
~~~~ 

) when t h e  s t a t e

o f the  process is h & - l o w  ii~~ md t o  us .  ( , ,) o t h e r w i s e .  Here  n * is t h e

smal les t  in t e g e r  l o u  wh chi  I) > 0 , wh e reu

I) = n A h 4 1) - (e(2) - c (  I ) ) / ( h i ( s  -
~~ ) (I-s ,)) If ~ ~ 1n 1 2 1 2  1

-~ n ~ n ( l ~ ~~~~~~~~ 2~ 
- 2 , ( c ( 2 )  - c ( l ) ) / ( h ( ~~1

-- 2~~ ~~ =

and = A /~ and b t 
~~~~~~ 

, ) / ( ( 1_
~~~) ( l_  , f l.

F u r t h er m o r e

~j c ( 2 )  - c(1))/ ( b C 1 
- 

2~~ 
(I- ~ 1

[ 2  
2~

’ (2) - c ( l ) ) / ( h (  
~~~~~~~~~ 

~~~ 
~ 

= I.

P r o o f .  Ihe policy (1e- scr ibed i n  t h i s  theorem is i v t - r i p e  o p t i m a l  by

[10 , Coro l l a ry  7 . 2 ] ,  (or the random walk , Thus , by Theorem 2. 1 , it is

average o p t i m a l  f o r  the b i r t h  and d e a t h  p r ~s e sS .

3. Op t imal C o n t r o l  ol A r  r i v a l  and ~; . - r ~ i e Rates in an M / M / 1  Queue

The following are  e x a m p l e s  of con t  r o l l e d  birth and d e a t h  processes

which have monotone optimal polici e s as we discussed above.

M/ M / 1~~~ueue wi th a C o n t ru l I ed  S e r v i c e  R a t e .  Suppose an M/M/ 1  queue has

a fixed arrival r a t e  A and i t s  se rv ice ra t e  is controlled as follows.

At each service completion or customer arrival , the number of customers

in the system is observed . Based on this number a service rate i i is
a

selected f rom the set {p
1
,... ‘

~ m~ ’ 
where the  ii ’s are subscri pted so tha t

0 < p
1 

... < 

~
‘m~ 

A cost c ( a )  per u n i t  t ime is charged for  us ing  u ,

and a cost h ( i )  per u n i t  t ime is charged fo r  hold i~ g i customers in the

system. A reward R is also received from each cus tomer .  We assume that

c(a)  is increasing,  and h ( i )  is convex increasing and h(O) = 0. This is

a controlled b i r t h  and dea th  process as in Theorem 2 . 2  w i t h  b i r th—dea th

parameters  ~~~~~~~~~~~~~~~~~~~~~~ 
Thus i t  is optimal  ( f o r  both discounted

8
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and average r e w a r d s )  t o  i in re ; 1s& t h e  se rv  l e t -  r a t e  ii; t hi .  numbe r of cus-

tome rs inc reases .  ‘I hi is w e  pr oved i n  I I , and s hij i J a r  r e s u l t s  f o r

I m i t  c l e n g t h  queu es  .i re di stussed in [ 2 1 , [8]  and some of the  r e f e r ences

in [ 4 ] .

M / M / I Q~ieue with a C o n t r o l l e d  Arrival R .itc . Suppose  an M / M / l  queue  has a

f i x e d  s e r v i c e  r a t e  p ,  and the ’  a r r i va l  r a t e  ‘a is selected from a set

, ... , A }, where - .. . > > 0 , at each s er v i c e  comple t ion  or1 m I

c ust o m e r  a r r i v a l .  (;~~s t s  ( - ( a )  and h i ( i )  a r e  i n c u r r e d  as above , and a

reward R i s  re ce  i v~-d f r o m  each c u s t o m e r .  Then b y Theorem 2. 2 i t  is

opt  imal  to d . c  r t - ; I s t -  the  a r r i v a l  r a t e  as the  number  of cus tomers  increases.

1 h i s  was proved in [ 7 ] :  see [6 ]  for f i n i t e -  queue  lengths .

~I~Ll~~~~ -ue- w i t h  C o n t r ol l e d  Arriv al and Serv ice  R at e s .  Suppose in an M/M/ l

q u e u e  t h a t  t h e  a r r i v a l  and service r a t e  p a i r  
~~a ’~~) 

is selected , at each

service completion and customer arrival , from a set

where ... > 0 and 0 < p ... - - p . W i t h  the costs c (a)  and
1 - - in 1 m

h ( i ) ,  and reward R , as abo v e , i t  is o p t i m a l  to i n c r e a s e  the  service ra te

and decrcase~ the a r r i v a l  r a t e  as the  number  of cus tomers  increases.

9
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